CHAPTER 2

Interactive Activation and Competition

Our own explorations of parallel distributed processing began with the
use of interactive activation and competition mechanisms of the kind we
will examine in this chapter. We have used these kinds of mechanisms to
maodel visual word recognition (McClelland & Rumelhart, 1981; Rumelhart
& McClelland, 1982) and to model the retrieval of general and specific
information from stored knowledge of individual exemplars (McClelland,
1981), as described in PDP:1. In this chapter, we describe some of the
basic mathematical observations behind these mechanisms, and then we
introduce the reader to a specific model that implements the retrieval of
general and specific information using the "Jets and Sharks" example dis-
cussed in PDP:] (pp. 25-31). (The interactive activation model of word
perception is presented in Chapter 7.)

After describing the specific model, we will introduce the program in
which this model is implemented: the iac program (for interactive activa-
tion and competition). The description of how to use this program will be
guite extensive; it is intended to serve as a general introduction to the
entire package of programs since the user interface and most of the com-
mands and auxiliary files are common to all of the programs. After
describing how to use the program, we will present several exercises,
including an opportunity to work with the Jets and Sharks example and an
opportunity to explore an interesting variant of the basic model, based on
dynamical assumptions used by Grossberg (e.g., Grossberg, 1978).

BACKGROUND

The study of interactive activation and competition mechanisms has a
long history. They have been extensively studied by Grossberg. A useful
introduction to the mathematics of such systems is provided in Grossberg



12 BACKGROUND

(1978). Related mechanisms have been studied by a number of other
investigators, including Levin (see Levin, 1976), whose work was instru-
mental in launching our exploration of PDP mechanisms.

An interactive activation and competition network (hereafter, JAC net-
work) consists of a collection of processing units organized into some
number of competitive pools, There are excitatory connections among
units in different pools and inhibitory connections among units within the
same pool. The excitatory connections between pools are generally bi-
directional, thereby making the processing interactive in the sense that pro-
cessing in each pool both influences and is influenced by processing in
other pools. Within a pool, the inhibitory connections are usually assumed
to run from each unit in the pool to every other unit in the pool. This
implements a kind of competition among the units such that the unit or
units in the pool that receive the strongest activation tend to drive down
the activation of the other units.

The wunits in an IAC network take on continuous activation values
between a maximum and minimum value, though their output—the signal
that they transmit to other units—is not necessarily identical to their activa-
tion. In our work, we have tended to set the output of each unit to the
activation of the unit minus the threshold as long as the difference is posi-
tive;, when the activation falls below threshold, the output is set to 0.
Without loss of generality, we can set the threshold to 0; we will follow this
practice throughout the rest of this chapter. A number of other output
functions are possible, Grossberg (1978) describes a number of other possi-
bilities and considers their various merits.

The activations of the units in an IAC network evolve gradually over
time. In the mathematical idealization of this class of models, we think of
the activation process as completely continuous, though in the simulation
modeling we approximate this ideal by breaking time up into a sequence of
discrete steps.

Units in an [AC network change their activation based on a function that
lakes into account both the current activation of the unit and the net input
to the unit from other units or from outside the network. The net input to
a particular unit (say, unit i) is the same in almost all the models described
in this volume: it is simply the sum of the influences of all of the other
units in the network plus any external input from outside the network. The
influence of some other unit (say, unit §) is just the product of that unit's
output, output;, times the strength or weight of the connection to unit i
from unit j. Thus the net input to unit 7 is given by

net; = Lwoutput; + extinput,. (1)
J
In the IAC model, outpur; = [a;]*. Here, a; refers to the activation of unit

J, and the expression [a; i" has value a; for all a,>0; otherwise its value is
0. The index j ranges over all of the units with connections te unit i. In



2. INTERACTIVE ACTIVATION AND COMPETITION 13

general the weights can be positive or negative, for excitatory or inhibitory
connections, respectively.

Once the net input to a unit has been computed, the resulting change in
the activation of the unit is as follows:

If (ner,>0),
Aa; = (max — a;)net; — decay (a; — rest).

Otherwise,
Aa; = (a; — min)net; — decay (a;, — rest).

Note that in this equation, max, min, rest | and decay are all parameters. In
general, we choose max =1, min < rest < 0, and decay between 0 and 1.
Mote also that @; is assumed to start, and to stay, within the interval
[min, max].

Suppose we imagine the input to a unit remains fixed and examine what
will happen across time in the equation for Aa;. For specificity, let’s just
suppose the net input has some fixed, positive value. Then we can see that
Aa; will get smaller and smaller as the activation of the unit gets greater
and greater. For some values of the unit's activation, Aa, will actually be
negative. In particular, suppose that the unit’s activation is equal to the
resting level. Then Aa, is simply (max—rest Jnet,. Now suppose that the
unit’s activation is equal to max, its maximum activation level. Then Ag, is
simply (—decay){max—rest). Between these extremes there is an equili-
brium value of a;, at which Ag; is 0. We can find what the equilibrium
value is by setting Aa, to 0 and solving for a;:

0= (max — a,)ner, — decay (a, — rest)

= (max)(net;) + (rest)(decay) — a; (net, + decay)

oo (max) (net;) + (rest) (decay) (2)
: ner; + decay '
Using max = 1 and rest = 0, this simplifies to
net, (3)
£ net; + decay’

What the equation indicates, then, is that the activation of the unit will
reach equilibrivm when its value becomes equal to the ratio of the net
input divided by the net input plus the decay., Note that in a system where
the activations of other units—and thus of the net input to any particular
unit—are also continually changing, there is no guarantee that activations
will ever completely stabilize—although in practice, as we shall see, they
often seem to.

Equation 3 indicales that the equilibrium activation of a unit will always
increase as the net input increases; however, it can never exceed 1 (or, in



14 BACKGROUND

the general case, max) as the net input grows very large. Thus, max is
indeed the upper bound on the activation of the unit. For small values of
the net input, the equation is approximately linear since x/(x+c) is approx-
imately equal to x/c for x small enough.

We can see the decay term in Equation 3 as acting as a kind of restoring
force that tends to bring the activation of the unit back to 0 {or to rest, in
the general case). The larger the value of the decay term, the stronger this
force is, and therefore the lower the activation level will be at which the
activation of the unit will reach equilibrium. Indeed, we can see the decay
term as scaling the net input if we rewrite the equation as

_ net/decay (4)
B (net,/decay)+1°

When the net input is equal to the decay, the activation of the unit is 0.5
(in the general case, the value is (max-+rest)/2). Because of this, we gen-
erally scale the net inputs to the units by a strength constant that is equal to
the decay. Increasing the value of this strength parameter or decreasing the
value of the decay increases the equilibrium activation of the unit.

In the case where the net input is negative, we get entirely analogous
resulis:

_ (min)(net,) — (decay) (rest) (5)
B net, — decay )

Using rest = 0, this simplifies to

(min ) (net;) (6)
net; — decay

da;

This equation is a bit confusing because net; and min are both negalive
quantities. It becomes somewhat clearer if we use amin (the absolute value
of min) and anet; (the absolute value of net;). Then we have

(amin M anet;) (M
anet, + decay

What this last equation brings out is that the equilibrium activation value
obtained for a negative net input is scaled by the magnitude of the
minimum {gmin). Inhibition both acts more quickly and drives activation
to a lower final level when min is farther below 0.

How Competition Works

So far we have been considering situations in which the net input to a
unit is fixed and activation evolves to a fixed or stable point. The



2. INTERACTIVE ACTIVATION AND COMPETITION 15

interactive activation and competition process, however, is more compli-
cated than this because the net input to a unit changes as the unit and other
units in the same pool simultaneously respond to their net inputs. One
effect of this is to amplify differences in the net inputs of units. Consider
two units @ and b that are in competition, and imagine that both are receiv-
ing some excitatory input from outside but that the excitatory input to a
(e,) is stronger than the excitatory input to b (e,). Let y represent the
strength of the inhibition each unit exerts on the other. Then the net input
to a is

net, = e, — y (output,) (8)
and the net input to b is

net, = e, — y (output, ). (9)

As long as the activations stay positive, output;, = a;, so we get

net, = e, — ya, (10)

o

and
net, = e, — yd,. (1

From these equations we can easily see that & will tend to be at a disadvan-
tage since the stronger excitation to a will tend to give a a larger initial
activation, thereby allowing it to inhibit # more than & inhibits ¢. The end
result is a phenomenon that Grossberg (1976) has called "the rich get
richer” effect: Units with slight initial advantages, in terms of their exter-
nal inputs, amplify this advantage over their competitors.

Resonance

Ancther effect of the interaclive activation process has been called "reso-
nance” by Grossberg (1978). If unit @ and unit & have mutually excitatory
connections, then once one of the units becomes active, they will tend to
keep each other active. Activations of units that enter into such mutually
excitatory interactions are therefore sustained by the network, or "resonate”
within it, just as certain frequencies resonate in a sound chamber. In a net-
work model, depending on parameters, the resonance can sometimes be
strong enough to overcome the effects of decay. For example, suppose that
two units, @ and b, have bidirectional, excitatory connections with strengths
of 2xdecay. Suppose that we set each unit’s activation at 0.5 and then



16 BACKGROUND

remove all external input and see what happens. The activations will stay
at 0.5 indefinitely because

Aa, = (1 — a,)net, — (decay)a,
= (1 — 0.5)(2) (decay ) (0.5) — (decay)(0.5)
= (0.5)(2) (decay ) (0.5) — (decay)(0.5)
= {),

Thus, IAC networks can use the mutually excitatory connections between
units in different pools to sustain certain inpul patterns that would other-
wise decay away rapidly in the absence of continuing input. The interactive
activation process can also activate units that were not activated directly by
external input. We will explore these effects more fully in the exercises
that are given later.

Hysteresis and Blocking

Before we finish this consideration of the mathematical background of
interactive activation and competition systems, it is worth pointing out that
the rate of evolution towards the eventual equilibrium reached by an 1AC
network, and even the state that is reached, is affected by initial conditions.
Thus if at time 0 we force a particular unit to be on, this can have the
effect of slowing the activation of other units. In extreme cases, forcing a
unit to be on can totally block others from becoming activated at all. For
example, suppose we have two units, @ and b, that are mutually inhibitory,
with inhibition parameter ¥ equal to 2 times the strength of the decay, and
suppose we set the activation of one of these units—unit a —to 0.5, Then
the net input to the other—unit b—at this point  will be
(—0.5)(2) (decay )= —decay . If we then supply external excitatory input to
the two units with strength equal to the decay, this will maintain the activa-
tion of unit @ at 0.5 and will fail to excite & since its net input will be 0.
The external input to b is thereby blocked from having its normal effect.
If external input is withdrawn from a, its activation will gradually decay (in
the absence of any strong resonances involving a) so that & will gradually
become activated. The first effect, in which the activation of & is com-
pletely blocked, is an extreme form of a kind of network behavior known
as hysteresis (which means "delay"); prior states of networks tend to put
them into states that can delay or even block the effects of new inputs.

Because of hysteresis effects in networks, various investigators have sug-
gested that new inputs may need to begin by generating a "clear signal,”
often implemented as a wave of inhibition. Such ideas have been proposed
by various investigators as an explanation of visual masking effects (see,



2. INTERACTIVE ACTIVATION AND COMPETITION 17

e.g., Weisstein, Ozog, & Szoc, 1975) and play a prominent role in
Grossberg’s theory of learning in neural networks (see Grossberg, 1980).

Grossberg’s Analysis of Interactive Activation and Competition
Processes

Throughout this section we have been referring to Grossberg’s studies of
what we are calling interactive activation and competition mechanisms. In
fact, he uses a slightly different activation equation than the one we have
presented here (taken from our earlier work with the interactive activation
model of word recognition). In Grossberg’s formulation, the excitatory and
inhibitory inputs to a unit are treated separately. The excitatory input (e)
drives the activation of the unit up toward the maximum, whereas the inhi-
bitory input (i) drives the activation back down toward the minimum. As
in our formulation, the decay tends to restore the activation of the unit to
its resting level.

Aa = (max — a)e — (@ — min)i — decay{a — rest). (12)

Grossberg’s formulation has the advantage of allowing a single equation to
govern the evolution of processing instead of requiring an if stalement to
intervene to determine which of two equations holds. It also has the charac-
teristic that the direction the input tends to drive the activation of the unit
is affected by the current activation. In our formulation, net positive input
tends always lo excite the unit and net negative input tends always to in-
hibit it. In Grossberg's formulation, the input is not lumped together in
this way. As a result, the effect of a given input {particular values of ¢ and
i} can be excitatory when the unit’s activation is low and inhibitory when
the unit's activation is high. Furthermore, at least when min has a rela-
tively small absolute value compared to max, a given amount of inhibition
will tend to exert a weaker effect on a unit starting at rest. To see this, we
will simplify and set max = 1.0 and rest = 0.0. By assumplion, the unit is
at rest so the above equation reduces 1o

Aa = (1)(e) — (amin) (i) (13)

where amin is the absolute value of min as above. This is in balance only
if i =e/amin.

Our use of the net input rule was based primarily on the fact that we
found it easier to follow the course of simulation events when the balance
of excitatory and inhibitory influences was independent of the activation of
the receiving unit, However, this by no means indicates that our formula-
tion is superior computationally. Therefore we have made Grossberg's
update rule available as an option in the iac program.



18  THE 1AC MODEL

THE IAC MODEL

The 1AC model provides a discrete approximation lo the continuous
interactive activation and competition processes that we have been consid-
ering up to now. We will consider two variants of the model: one that fol-
lows the interactive activation dynamics from our earlier work and one that
follows the formulation offered by Grossberg,

Architecture

The 1IAC model consists of several units, divided into pools. In each
pool, all the units are mutually inhibitory. Between pools, units may have
excitatory connections. The model assumes that these connections are
bidirectional, so that whenever there is an excitatory connection from unit §
o unit f, there is also an excitatory connection from unit j back to unit .

Visible and Hidden Units

In an IAC network, there are generally two classes of units: those that
can receive direct input from outside the network and those that cannot.
The first kind of units are called visible units; the latter are called hidden
units, Thus in the IAC model the user may specify a pattern of inputs to
the visible units, but by assumption the user is not allowed to specify exier-
nal input to the hidden units; their net input is based only on the outputs
from other units to which they are connected.

Activation Dynamics

Time is not continuous in the 1AC model (or any of our other simulation
models), but is divided into a sequence of discrete steps, or cyeles. Each
cycle begins with all units having an activation value that was determined at
the end of the preceding cycle. First, the inputs to each unit are compuled.
Then the activations of the units are updated. The two-phase procedure
ensures that the updating of the activations of the units is effectively syn-
chronous; that is, nothing is done with the new activation of any of the
units until all have been updated.

The discrete time approximation can introduce instabilities if activation
steps on each cycle are large. This problem is eliminated, and the approxi-
mation to the continuous case is generally closer, when activation sieps are
kept small on each cycle.



2. INTERACTIVE ACTIVATION AND COMPETITION 19

Parameters

In the TAC model there are several parameters under the user’s control.
Most of these have already been introduced. They are

Hax
The maximum activation parameter.

iR
The minimum activation parameter,

rest
The resting activation level to which activations tend to settle in the
absence of external input,

decay
The decay rate parameter, which determines the strength of the
tendency to return to resting level.

estr
This parameter stands for the strength of external input (i.e., input
to units from outside the network), It scales the influence of exter-
nal signals relative to internally generated inputs to units.

alpha

This parameter scales the strength of the excitatory input to units
from other units in the network.

Bamma
This parameter scales the strength of the inhibitory input to units
from other units in the network.

In general, it would be possible to specify separate values for each of
these parameters for each unit. The IAC model does not allow this, as we
have found it tends to introduce far too many degrees of freedom into the
modeling process. However, the model does allow the user to specify
strengths for the individual connection strengths in the network.

IMPLEMENTATION

The 1AC model is implemented by the iac program. This program, like
all of our simulation programs, is written in C. The program consists of
several parts: the command interpreter, the display package, the network
configuration package, the patterns package, and the core routines of the
model. In describing the implementation of this and other models, we will
focus our atlention on the core routines, but here we will briefly describe
the rest of the package so that the reader has some pointers to understand-
ing what is going on. More detailed implementation information is pro-
vided in Appendix F, which serves as a guide for readers who wish to



20 IMPLEMENTATION

actually explore and possibly alter the source code itself. Here follow brief
descriptions of the various noncore parts of the program,

The Command Interpreter

The command interpreter is a set of subroutines that reads commands,
either from a start-up file when the program is first called or from the key-
board while the program is running. There is also a facility that allows the
user to direct the command interpreter to read and execute a sequence of
commands found in a file. The command interpreter works by looking up
commands it encounters in a large table of commands and executing the
subroutine that is found in the table associated with the command. We will
explain how to use the command interpreter in the section "Running the
Program" later in this chapter.

The Display Package

The display package is a set of routines that manages the 24 =80 charac-
ter display screen. One set of routines is used to read a file called the tem-
plate file when the program is first called. The information in this file is
used to set up a set of templares, or display objects, and to indicate what
each template contains and where on the screen it should be displayed.
Another set of routines is used to do the actual displaying; these are com-
mands that can be issued either by the user directly or from other parts of
the program.

The Network Configuration Package

This package consists of a sel of routines that is used in configuring the
program for a particular application. The routines read commands from a
file called the merwork conficuration file, or the nerwork file for short, and
use these commands to set up arrays for the units and the weights, to
specify initial values for the connections, and to indicate whether connec-
tions are maodifiable or not.

The Patterns Package

This package consists of a sel of routines that is used to read in a set of
patterns for use as inputs to the model. These routines read a file called



2. INTERACTIVE ACTIVATION AND COMPETITION 21

the pattern file. Some of the programs—among them, the iac program—can
be run without reading in a file full of patterns, but the package is available
for use if desired.

The Core Routines

Beyond the routines just mentioned is a set of core routines that imple-
ments the activation and competition processes described earlier. The rou-
tines are simple and make up a rather small part of the program. Here we
explain the basic structure of the core routines used in the ia¢ program.

getinpwd.  This routine is used to specify which of the units in the net-
work will receive external input. The routine prompts the user for names
or numbers of units and for corresponding external input values, after first
allowing the external inputs to be cleared to all zeros if desired. Note that
this does not actually start the process of sending inputs to the units; il sim-
ply says which units should receive inputs and how strong they should be
when the process actually starts,

reset. This routine is vsed to reset the activations of units to their rest-
ing levels and to reset the time—the current cycle number—back to 0. All
other relevant variables are cleared, and the display is updated to show the
initial state of the network before processing begins,

cycle. This routine is the basic routine that is used in running the
model. It carries out a number of processing cycles, as determined by the
program control variable ncpcles. On each cycle, two routines are called:
getnet and update. At the end of each cycle, the program checks to see
whether the display is to be updated and whether to pause so the user can
examine the new state (and possibly terminate processing). At the end of
ncycles of processing, the display is updated if it has not been updated on
every cycle. The routine looks like this:

cycle() |

for {cy = 0; cy < ncycles; cy++) |
cyclenot+;
getnet ()
update ()

/* what follows is concerned with
pausing and updating the display */
if (step size == CYCLE) |
update display();



22 IMPLEMENTATION

if {(single step) |
if {contin_test () == BREAK) break;
1
1
1
if {step size > CYCLE) |
update display();
!

The getnet and update routines are somewhat different for the standard ver-
sion and Grossberg version of the program. We first describe the standard
versions of each, then turn to the Grossberg versions.

Standard getnet. The standard gernet routine computes the net input to
each unit. The net input consists of three things: the external input, scaled
by estr; the excitatory input from other units, scaled by alpha; and the in-
hibitory input from other units, scaled by gamma. For each unit, the getner
routine first accurnulates the excitatory and inhibitory inputs from other
units, then scales the inputs and adds them to the scaled external input to
obtain the net input,

Whether a connection is excitatory or inhibitory is determined by its sign.
Thus if w;; is positive, wya, is added into the excitation term of unit i. If
w;; is negative, w;a; is added into the inhibition term of unit i. These
operations are only performed if the activation of the sending unit is greater
than 0. The code that implements these calculations is as follows:

getnet () |

for {i = 0; 1 < nunits; i++) |
excitation[i] = inhikitionl[il = 0;

for (j = 0; j < nunits; j++) {
if {activation([jl = 0} {
if (wlil[3l = Q) {
excitation[i] += weight[i][j]*activation[jl:
]
else if (w[il[3] < D) {
inhibition[i] += weight[i][j]*activation([i];
t
t
t
netinput [i] = estr*extinput(i] + alpha*excitation(i]
+ gamma*inhibition([i]:



2. INTERACTIVE ACTIVATION AND COMPETITION 23

Standard update. The update routine increments the activation of each
unit, based on the net input and the existing activation value, Here is what
it looks like:

update ()} |

for (i = 0; i < nunits; i++) |
if (netinputl[i] > 0} |
activation[i] += (max - activation[i])}*netinput[i]
- decay* (activation[i] - rest);:
]
else |
activatioen(i] += (activation[i]-min)*netinput[i]
- decay* (activation(i] - rest):
}
if {activation([i] > max) activaticn[i]
if {activation[i] < min) actiwvation[i]

max;
min;

,

The last two conditional statements are included to puard against the
anomalous behavior that would result if the user had set the eser, istr, and
decay parameters to values that allow aclivations to change so rapidly that
the approximation to continuity is seriously violated and activations have a
chance to escape the bounds set by the values of max and min.

Grossberg versions. The Grossberg versions of these two routines are
structured like the standard versions. In the getner routine, the only differ-
ence is that the net input to each unit is not computed; instead, the excita-
tion and inhibition are scaled by alpha and gamma, respectively, and scaled
external input is added to the excitation if it is positive or is added 1o the
inhibition if it is negative:

excitation[i]*= alpha*excitation([i];
inhibitien[i]*= gamma*inhikbition([i];
if (extinput[i] > 0} excitatiocn([i] += estr*extinput([i]:
else if (extinput([i] < 0)
inhibition[i] 4= estr*extinput([i];

In the update routine the two different versions of the standard activation
rule are replaced by a single expression. The routine then becomes

update () |
for (i = 0; i < nunits; i++) {
activation([i] 4= {max - activation[i])*excitation[i]

+ factivation[i] - min)*inhibition(i]
= decay* (activation[i] - rest):



24 RUNNING THE PROGRAM

if (actiwvation[i] > max) activation([i]
if (activation[i] < min) activation[i]

max;
min;

The reader may have noticed that the main computational loops of the
program make no explicit mention of the IAC network architecture, in
which the units are organized into competitive (inhibitory) pools and in
which excitatory connections are assumed to be bidirectional. These archi-
tectural constrainis are imposed in the network file. In fact, the iac program
can implement any of a large variety of network architectures, including
many that violate the architectural assumptions of the IAC framework.

As these examples illustrate, the core routines of this model—indeed, of
all of our models—are extremely simple. Actually, some complexity has
been suppressed, but not much. What makes the programs rather complex
is all of the auxiliary routines.

RUNNING THE PROGRAM
Starting Up

To run the iac program, it is first necessary to set up a working directory
containing the relevant files. An explanation of how this is done is given in
Appendix A. Here we assume that you have created a working directory
for iac and that you have positioned yourself in that directory. To execule
the program, you would enter the following:

iac < templatefile> < startupfile =

MNote that any commands entered either inside or outside of our program
must be terminated by pressing the return or enter key. We adopt the con-
vention of giving variables that must be replaced by specific values inside
of angle brackets. Thus < templatefile> must be replaced by the name of a
specific template file, and < startupfile>> must be replaced by the name of a
specific start-up Nile. By convention, the names of template files end with
the extension .tem and the names of start-up files end with the extension
str. Henceforth we will refer to the template file as the .tem file, and the
start-up file as the .sir file.

The program will run without a template file or a start-up file being
given, but the template file is necessary to tell the program what to display
and where to display it; without one, there will be no display on the screen,
The first argument to the program is always inlerpreted as a template file



1. INTERACTIVE ACTIVATION AND COMPETITION 25

name, so the program will misinterpret the .str file if the .tem file is left
out. To prevent this, the program may be run with a single "—" in place of
the template file name:

igc — < startupfile =

The .str file can be omitted without any ill effects. In general this file
contains commands that initialize the network configuration and set the
values of various parameters of the model. These can all be entered
directly by the user once the program has started to run. The two things
that are special about the .str file is that the commands in it are executed
without printing anything to the screen and that errors encountered in the
.str file cause the program to terminate immediately, with an error message
printed to the screen. The .str file can contain any commands the user
wishes to put in it, including commands to run the program, save output,
and quit. This allows programs to be run in background mode on UNIX
systems, using a script of commands from the .sir file.

Assuming the .sir file is processed without error and without encounter-
ing a quit command, the program will present a display containing an iac:
prompt on line 0, a menu listing commands that may be entered on lines 1
through 4, and a display of the current state of the network. From this
point on, the user may enter commands to the program via the command
interface.

Entering Commands via the Command Interface

It is useful to think of commands as being entered one per line, with
spaces separating the command from its various arguments. For example,
the iac program provides a command that allows the user to display any of
the various display chunks or templares that have been specified in the .rem
file. This command is given by entering

iac: disp < templare=

where < template> is the name of any template specified in the .rem file.
Note that in this and subsequent examples, we display the prompt typed by
the computer in bold, with the response from the user in italic. Also note
that the user interface is case sensitive, and command names are in lower-
case throughout. In the exercises we capitalize the first letter of some of
the unit names; otherwise everything is lowercase.

A nice feature of the command interface is that it will generally prompt
you with possible options should you wish to see them. At the top level,
the program always provides a list of the commands that can be entered,



26 RUNNING THE PROGRAM

To see lists of options that are specifiable within a given command, enter
the command name by itself. Thus if you enter

iac: disp

the program comes back with the list of possible continuations of the
display command and a revised prompt,

iac: disp/

indicating that you may now enter the continuation you want. If you just
want to look at the list of possible continuations, you can type return (press
the return or enter key), and the program will return to the top level.
Alternatively, you may enter one of the available continuations. If further
input is required, you will be prompted for it; you may type return at almost
any time, and the program will revert to the top-level prompt, awaiting a
new command input.

One may think of the commands available in the program as consisting
of a command name, followed by one or more specifiers, followed finally by
one or more arguments. The specifiers indicate which particular one of
several specific commands you wish to execute, and the arguments are the
parameters of the command itself. Commands or specifiers that must be
followed by further specifiers are terminated in the menus by a"/" charac-
ter. The other commands or specifiers do not require further specifiers,
though the user will generally be prompted for additional arguments. The
display command is an example of the former type of command: It requires
a further specifier indicating which template to display. The log command
is an example of the latter type. It is used to control the storing of a log of
the activity of the network in a file. This command requires a file name
argument.

In all cases, the entire command, including the command name, the
specifiers, and the arguments, may be entered as a single line. Alterna-
tively, the user may enter any part of a command and be prompted for the
possible continuations of it.

A further feature of the command interface is thal commands and com-
mand specifiers do not have to be entered in their entirety; instead, it is
only necessary to type enough of the beginning of the command or speci-
fier to uniquely distinguish it from all other available alternatives. Thus,

iac: fo foo.log

is sufficient to open a log hle called foo.fog, given that there are no other
commands accessible at the top level that begin with the characters lo.

The command interpreter prints an error message if the command string
entered is not consistent with any of the available commands., The message
is available for a short period (a few seconds), then the command



1. INTERACTIVE ACTIVATION AND COMPETITION 27

interpreter returns to the top level, ignoring the remainder of a command
line on which an error is encountered.

After start-up, il remains possible to ask the command interpreter to pro-
cess a preset list of commands from a file. This is done using the do com-
mand. This command requires a file-name argument; once it opens the
file, the command interpreter simply reads commands as if they had been
typed in by the user. When it encounters an error, it prints the correspond-
ing error message and presents the following interrupt prompt;

iac: p to push /b to break / <cr> to continue:

If you enter p, the command interpreter will be called recursively, and you
can enter any commands you wish (see below). If vou enter b, the com-
mand interpreter will quit reading commands from the command file and
return to the top level for further input. The notation <cr> stands for
carriage return; if you just type a return, the command interpreter will con-
tinue trying to read commands from the command file, with possibly
anomalous results. In general, it is best to break at this point and to quit
the program and fix the do file.

Interrupting Processing

Sometimes when the program is running, you may see that il is doing
something you had not intended or that it is continuing longer than you
wanted. In this case, you can type control-C (hold down the key marked
control and the C key at the same time). This causes the program to set a
flag that is checked at the end of the current processing cvcle. When the
flag is found to be set, the program prints the interrupt prompt, giving the
user the option to push, break, or continue. Again, you can continue
processing by typing refurn, you can break and return to command level
by entering &; or you can call the command interpreter recursively by
entering p.

When you interrupt processing, the interrupt character ("C) will appear at
a4 random place on the screen. If this is annoying, you may enter display
state to the command interpreter to clear the screen and redisplay the state
of the network.

Single Stepping

In order to examine the course of processing as it unfolds, the program
offers the user the option of using the single-step mode. When this mode is
on, the program interrupls itsell” after each processing step, displaying the



28  RUNNING THE PROGRAM

interrupt prompt, just as if the user had typed an interrupt. Generally, the
user will type retwrn when ready to continue, but it remains possible to
either break or push to a recursive command level.

The Recursive Command Level

When the command interpreter is called recursively, it displays the fol-
lowing prompt:

IN] iac:

Here [V] indicates the depth of the recursion (it is possible to embed recur-
sive calls indefinitely, or at least until your computer runs out of stack
space). In this mode vou can enter commands as you normally would. To
terminate this recursive call to the command interpreter, simply tvpe refurm,
this will return you to the interrupt prompt, from which the push, break,
and continue options remain available,

Running Commands Outside the Program

Sometimes, while a simulation is in progress, it is useful to execute a
command outside the simulation program. For example, you may wish to
determine whether a particular file exists. To do this you can use the run
command. Simply enter run, followed by the command, followed by any
arguments to the command, followed by end. For example, on a PC, 1o see
if the file foo.log exists, you would enter:

run dir foo.log end
The program will then pass the command
dir foo.log

to the MS-DOS command interpreter.
As another example, if you enter

rien command end

the MS-DOS command interpreter will be invoked, and you can enter MS-
DOS commands. To return to the simulation program at this point, just
enter exit.



2. INTERACTIVE ACTIVATION AND COMPETITION 29
Quitting the Program

To quit the program, you enter guif to the command interpreter. Since
vou may have done various things that you would like to save before you
quit, the program asks you to confirm your intention of quitting. If you
enter y at this point, the program will terminate, closing all files that were
open and clearing the screen. If you do not want to quit, type refurn or
anything else.

Display Conventions

Displays are organized to pack lots of information into a small space. As
a result, values of floating-point variables are usually given in a compact
format in which only two or three character positions are used for each
variable. The true value of the variable is first multiplied by a scale factor
(specified in the template file) and then printed in the available space. For
activations and other variables with absolute values less than 1.0, a scale
factor of 100 is generally used, so that an activation of 0.01 displays as™ 1"
and 0.99 displays as " 99" Values that are negative are displayed, by
default, in standowt mode, which on most display devices is reverse video
(lighted background). If you are running the programs on a display device
that has no standout mode, you should turn off the use of standout by
using the display options standouwt command described in the command
description section. When standout mode is off (and when the screen
image is saved in a file), negative numbers are displaved using minus signs
where possible. Thus, il three character positions are available, —0.99
displays as "—99."

Special provisions have been made to deal with the problem of displaying
variables that cannot fit the space available to them. WValues that exceed the
available space are printed as one or more "*" characters. When standout
mode is off and the minus sign will not fit, the number is printed in an
alphabstic code, where a to j stand for the digits 1 to 9 and o stands for 0,
values that are still too large to fit are displayed as one or more X’s,

Making Graphs

Utility programs are provided for making simple graphs of output that
has been stored in log files. The use of these utility programs is described
in Appendix D). You may also wish to use other graphics software of
your own, since the plotting program we provide has very coarse spatial
resolution,



30 RUNNING THE PROGRAM
Command Descriptions

Here we describe all of the commands available in the iac program. We
suggest you take a brief look at these descriptions of the commands and at
the following discussion of the variables used in the program, to get a sense
of how things are organized, and then proceed to the first exercise, where
you will have a chance to learn about the commands by using them. (A list
of all of the commands available in all programs is given in Appendix B.}

Note that we define a command as a sequence consisting of a command
verb followed by one or more command specifiers. First the simple top-
level commands are described: These are the commands that consist only
of a command verb followed by arguments. Then the more general com-
mand verbs and the specific commands available using each verb are
described in a nested fashion. We first describe the command verb and
then give the specifiers for that verb; if there are subspecifiers, they are
further nested under the specifiers.

The top-level commands in the program allow the user to run the simu-
lation model and to carry out a variety of other actions. Most of these
commands are common to all of the programs presented in this book.

clear
Clears the screen, leaving it blank.

cycle
Runs the program through ncyeles processing cycles.

do
Prompts for a file name containing a list of commands to execute
and then prompts for a count, which indicates the number of times
to execute the entire list.

inpr
Prompts for unit names or numbers and then prompts for external
input values. These may be any real number, though the usual
values are +1 and —1. Entered values are placed in the external
input vector for use during subsequent processing.

log

Prompts for a file name to store a log of the information displayed
to the screen. If the file the user specifies already exists, the new
log will be appended to the end of this file. Once a log file has been
opened, each time the screen is updated, all the templates that are
displayed are checked to see if they should be logged. All the
information logged at one time is placed on a single line in the log
fle, separated by spaces. ltems whose dfevel is less than or equal to
the global slevel parameter are logged in the order they occur in the
.tem file; all other items are skipped over. See Appendix D for a
more detailed explanation. Logging can be turned off by calling log
again and entering "—" instead of a file name; alternatively, a new
file name will close the old log file and open a new one.



2. INTERACTIVE ACTIVATION AND COMPETITION 31

quit
Quits the program. Prompts for confirmation; to confirm, enter y.

resel
Resets the model to its initial state. The cvcleno is set to 0, and the
activations of all the units are set back to the resting level. The
display is cleared and updated.

rin
Passes a command out of the program for execution by the MS-
DOS command interpreter. Prompts for a command, then for
arguments. End the list of arguments by entering end or by simply
typing an extra refurn,

test

Prompts for the name or number of a pattern to test the model
with. If the pattern is successfully identified, the program uses it to
sei the walues of the first minpuis elements of the external input
vector; all additional units in the net are given an external input of
0. This command then resets the network and runs the program
through noycles of processing. The user may then run more cycles
by using the cycle command.

This ends the simple commands. We now turn to the compound com-
mands that require a general command flollowed by further specifiers. As
in the program itself, we designate command words that require further
specifiers with "/"; the user is not required to type these, however. We
describe each general command in turn, giving each with a list of the
further specifiers available,

disp/
Allows the user to display the current state of the network, to
designate a specific template Tor display, or to sel various display
options, using the opr subcommand.

disp/ state
Clears the screen and displays the current state ol the network, as
specified by the plobal dlevel variable and by the attributes of the
various templates found in the .rem file. All templates whose asso-
ciated dlevels are less than or equal to the global dlevel are displayed.

disp/ < template=>
Displays the designated template, regardless of its dlevel, All other
template attributes are honored.

disp/ opt}
Allows the user to modify various display options using the sub-
specifiers that follow.

disp/ opt] standout
Determines whether negative numbers are displayed lo the screen
in standout mode (reverse video, on most displays) or not. If
standout mode is not available, you should set this option to 0,



32 RUNNING THE PROGRAM

otherwise, the program will attempt to use standout mode with
negative numbers, and they will be indistinguishable from positive
numbers.

disp/ opt/ < template>

exam/

get|

Allows the user to change various options associated with the tem-
plates defined in the .rem file. After the user enters

disp opt < template>

the program prompts for an attribute of the template to change—
either the display level, the number of digits of precision, or the
scale factor associated with the template. The user then enters the
name of the attribute (just the first character will do) followed by
the new value to assign to this attribute.

Allows the user to examine and optionally set the value of one of
the variables of the program. Use of this command is described
under " Accessing Variables,” later in this chapter. (This command
is a synonym of set/.)

Allows the user to get lists of things into the program, according to
the option specified. The ger commands either read a file or
request a list of items terminated by end or a blank line.

get/ network

Allows the reading of a network specification from a file. The pro-
gram prompts for the file name. The get/ network command is
usually given in the .str file. A full description of the format of the
network file is given in Appendix C.

get/ patterns

Allows the user to read in a set of input patterns from a file. Before
it can be used, the variable ninputs must be defined. This variable
tells the program how many input activation values to expect to
find in each input pattern. The command prompts for a file name.
Conventionally such files are given a .par extension, A .par file
consists of a sequence of pattern specifications, typically one per
line. The first entry in each pattern specification is a name for the
pattern, Subsequent elements specify values to be used to specify
inputs to each of the units in the network. Elements are separated
by spaces. The first element determines the input to the first unit,
the second element determines the input to the second unit, and so
on. Elements may be f{loating-point numbers, or they may be a
"4, """ or"." character. A "+" indicates that the input to the
corresponding unit is +1, a"—" indicates that the input is —1, and a
"." indicates that the corresponding unit will receive a 0 input when
the pattern is presented to the network. The number of patterns
read is stored in the variable nparterns. The patterns are stored in



2. INTERACTIVE ACTIVATION AND COMPETITION 33

an array called ipattern; each pattern is a separate row of this array,
Thus, element 4 of pattern 2 is stored in iparrern[2][4].

get/ unames
Allows the user to enter a list of names for the units in the model.
Prompts for one name at a time; these are assigned sequentially to
the units, starting with unit 0. The end of the list is indicated by
typing refurn (a blank line) or entering the string end.

get/ weights
Allows the reading of a file containing numerical weights, one for
each connection in the network. Prompts for the name of a weight
file. Weight files are expected to be in the same format as is used
by the save/ weights command (see below).

save,
Allows the user to save various kinds of information in files. There
are two specifiers available in iae: screen and weights,

save, screen
Prompts for a file to store an image of the screen. If the file
already exists, the screen image is appended to it. Standout mode
is turned off since it cannot be "printed” in a file. The screen is
displayed with standout mode off before the file name is requested,
if you do not want to store what you see, simply type return instead
of a file name, and no saving will take place.

save; weights
Prompts for a file to store the current values of the weights. If the
file already exists, you are warned and asked if you wish to
overwrite it. A file so created can later be read in again using the
get/ weights command. Entries in the file are ordered as follows:
For each unit, all the weights to that unit are stored in increasing
order. After all the weights come the biases for each unit, if there
are any biases. (There are no biases in iac.)

set/
Allows the user to examine and optionally set the value of one of
the variables of the program. Use of this command is described
under " Accessing Variables" later in this chapter. (This command
is a synonym of exam/.)

Variable Types

Variables are of several types: Some are strings of characters, some are
integers, and some are floating-point numbers, Within each of these types,
some are single-valued wvariables, others are vectors, or lists of variables
with an index; and others are matrices, or two-dimensional arrays of vari-
ables with two indexes. In accessing single-valued variables, once the vari-
able has been entered, the program will display the current value, and at



34 RUNNING THE PROGRAM

this point the user may enler a new value or simply type refurn 1o return to
the command level. With vector variables, an index must be given before
a value is displayed for possible alteration; with array variables, two indexes
are required.

Vector indexes may be given as numbers (with the first element being
element 0) or, if the elements of a vector have names, these may be used
as indexes. Thus, if unit 0 has been named Fred, the index 0 may be speci-
fied by entering Fred. Note that both units and patterns may have names.
The program is set up so that unit names and pattern names are consulted;
the program can get confused if the same names are used for both units
and patterns.

Arrays are generally used for weights or other variables that are associ-
ated with the connections to a particular unit from another unit. The
indexes are specified in receiver-sender order. Note that if the units have
names, the names can be used here as well. Arrays are also used for pat-
terns, with the first index specifying the pattern number and the second
specifying the number of the element within the pattern.

All of the programs have a fairly large number of variables. These vari-
ables are organized into several different functional groups:

® Mode. These are variables whose values determine switchable
characteristics of the model being implemented by the program.
Generally, the programs can be thought of as implementing a
"hase" model and several variants. When the mode variables are all
set to 0 (off), the base model is implemented. When one or more
of these variables is set to 1 (on), other variants are in force.

® Conficuration. These variables determine basic configurational
properties of the network that is being used in a particular simula-
tion run, and they are generally set in the .met file. Configuration
variables should generally not be changed during a run but can be
examined. Also included as a configuration variable is the list of
names that have been assigned to the units in the network.

® Fnvironment. These are variables associated with the test environ-
ment in which the program is run, that is, with the set of patterns
that may be presented to the model for testing.

® Parameter, These variables are the parameters of the model, the
ones that determine such things as the relative strength of excita-
tion vs, inhibition, the decay rate, and so on.

® Srate. These are variables that are associated with the current state
of the processing network, such as the activation wvalues of the
units,



7. INTERACTIVE ACTIVATION AND COMPETITION 33

e Top-level variables. These variables are the ones you need to
change to control the activity of the simulation model itself. Also
included at the top level are the weights associated with the connec-
tions and the bias terms (if any) associated with the units in the
network.

Accessing Variables

Variables are accessed using the ser and exam commands. The top-level
variables are accessible directly, because they tend to be accessed most
often in using the programs. These variables are accessed by typing

set << variable >
or

exam < variable>

Other variables are accessed through specifiers that correspond to the dif-
ferent variable types: the specifiers are config, mode, env, param, and state.
They are accessed by typing

ser < specifier> < variable>
or

exam < specifier> < variable>

Variable List

Here follows a list of all of the variables available in iac. First listed are
all of variables directly accessible via the set and exam commands. These
are followed by the variables that require specifiers, as indicated.

dlevel
An integer variable that determines which templates will be
displayed when the display is updated. All templates with dlevels as
specified in the .tem file that are less than or equal to this global
dlevel parameter are updated.

neveles
An integer variable that specifies how many processing cycles are
executed when the cpele command is entered.



36 RUNNING THE PROGRAM

seed

single

slevel

stepsize

weight

The current value of the seed used by the random number genera-
tor. May be set by the user to equal any integer. Not used in fac;
see Chapter 3 for a full discussion.

A switch variable, normally set to 0, that makes the program run in
single-step mode when set to 1.

An integer variable that determines which templates will be logged
in the log file when the screen is updated. Note that a template is
logged only if (a) a log file has been opened with the log command,
(b) the template’s dlevel is less than or equal to the global dlevel,
and (c) the template’s dlevel is also less than the global slevel.

A string variable that controls the size of the processing steps taken
by the program between screen updates. Allowed values are cycle
and noyeles.

A floating-point matrix variable. The matrix contains the weights
to each unit in the network from each unit. The user can examine
the value of a particular weight by entering the command ser/
weight < io_index> < from_index>, where <to_index> is the name
or number of the receiving unit and < from _index> is the name or
number of the sending unit.

config/ ninputs

An integer variable specifying the number of input units for which
external inputs will be specified in each ipattern read by the get/
patterns command.

config/ nunits

An integer variable specifying the number of units in the network.
This is generally declared in the .ner file and should not be reset
but may be examined.

config/ uname

A vector of character strings read in by the get/ unames command.
These sirings are taken to be the names associated with the units in
the network.,

env/ ipatiern

A fMoating-point array variable containing the patterns read in by
the last get/ patterns command. Note that the first index specifies
the pattern, and the second index specifies the element within the
pattern. Thus the command exam/ ipattern 3 2 requests the pro-
gram to print the value of element 2 in pattern 3. Note, the term
ipattern 15 used rather than just parfern because in some programs
there are two types of patterns, input patterns and target patterns.
The ipartern variable is used to refer to the former type.



2. INTERACTIVE ACTIVATION AND COMPETITION 37

env/ maxpatterns
The maximum number of patterns that can be read into the net-
work. This variable is automatically increased by the program if
more patterns are encountered in the .par file, but when large
numbers of patterns are used, network initialization occurs more
quickly il maxpatterns is set to a value a bit greater than the number
of patterns that will be read in.

env/ npatterns
The number of patterns that have been read into the program by
the last get/ patterns command.

env/ pname
A vector or list of character string variables specifying the names of
the patterns read in by the ger/ patterns command.

mode| gb
This mode variable, when set to 1, causes the program to use
Grossberg’s updating function rather than the standard function
taken from McClelland and Rumelhart (1981).

param/ alpha
A Moating-point variable that scales the strength of the excitatory
influences on units from other units,

param/ decay
A fNoating-point variable specifying the decay rate of unit’s activa-
tions,

param/ estr
A floating-point variable that scales the strength of the external
input to units in the network.,

param, gamma
A floating-point variable that scales the strength of the inhibitory
influences on units from other units.

param/ max
A floating-point variable specifying the maximum activation of each
unit.

param/ min
A foating-point variable specifying the minimum activation of each
umnit.

param/ rest
A floating-point variable specilying the resting activation of each
umnit.

state/ activation
A vector of Moating-point variables specifying the activation values
of the units in the network.

state/ cpname
A string variable specifying the name of the current pattern (if any)
that was specified for testing via the rest command.

state/ cycleno
The number of processing cycles elapsed since the last reset.



38  EXERCISES

stare/ excitation :
A vector of floating-point values specifying the excitatory input to
each unit, as computed during the most recent processing cycle.
state/ extinput :
A vector of floating-point values specifying the external input to
each unit, as determined by the last impat command or by the last
pattern specified for testing via the rest command.
state/ inhibition
A vector of floating-point values specifying the inhibitory input to
each unit, as computed during the most recent processing cycle.
state/ netinput
A vector of floating-point values specifying the net input to each
unit, as computed during the most recent processing cycle.
state/ patno
The index of the current pattern (if any) that was specified for test-
ing via the test command.

OVERVIEW OF EXERCISES

In this section we suggest several different exercises. Each will stretch
your understanding of IAC networks in a different way. Ex. 2.1 focuses
primarily on basic properties of IAC networks and their application to vari-
ous problems in memory retrieval and reconstruction. Ex. 2.2 suggests
experiments you can do to examine the effects of various parameter manip-
ulations. Ex. 2.3 fosters the exploration of Grossberg’s update rule as an
alternative to the default update rule used in the iac program. Ex. 2.4
suggests that you develop your own task and network to use with the iac
program.

If vou want to cement a basic understanding of IAC networks, you
should probably do several parts of Ex. 2.1, as well as Ex, 2.2. The firsi
few parts of Ex. 2.1 also provide an easy tutorial example of the general use
of the programs in this book. Answers to the questions in Exs. 2.1-2.3 are
given in Appendix E.

Ex. 2.1. Retrieval and Generalization

Use the iac program o examine how the mechanisms of interactive
activation and competition can be used to illustrate the following properties
of human memory:

& Retrieval by name and by content.



2. INTERACTIVE ACTIVATION AND COMPETITION 39

@ Retrieval with noisy cues.

® Assignment of plausible default values when stored information is
incomplete.

® Spontaneous generalization over a sel of familiar items.

The "data base" for this exercise is the Jets and Sharks data base shown in
Figure 10 of PDF:] and reprinted here for convenience in Figure 1. You
are 10 use the iae program in conjunction with this data base to run illustra-
tive simulations of these basic properties of memory. In so doing, you will
observe behaviors of the network that you will have to explain using the
analysis of IAC networks presented earlier in the "Background" section.

The Jets and The Sharks

Mame Gang Age Edu Mar  Occupation

Art Jets 40°'s  J.H. Sing.  Pusher
Al Jets s J.H. Mar. Burglar
Sam Jets W's COL. Sing. Bookie
Clyde Jets 40°'s  J.H. Sing.  Bookie
Mike Jets s JH. Sing.  Bookie
Jim Jets W's  J.H. Div. Burglar
Greg Jets s H.S. Mar. Pusher
John Jets W's JH. Mar.  Burglar
Doug  Jets 3's  HS. Sing. Bookie

Lance  Jets W's  JH. Mar.  Burglar
George  Jets 0's  J.H. Div. Burglar
Pete Jets s H.S. Sing.  Bookie
Fred Jets s H.5. Sing. Pusher
Gene Jets W's COL. Sing. Pusher
Ralph  Jets 30's  J.H. Sing.  Pusher
Phil Sharks 30's  COL. Mar. Pusher
Ike Sharks 30's  J.H. Sing.  Bookie
MNick Sharks 30's H.5. Sing.  Pusher
Don Sharks 30°s CO0OL. Mar. Burglar
Med Sharks 30°s COL. Mar. Bookie
Karl Sharks 40's H.S. Mar. Bookie
Ken Sharks 20°s  H.5. Sing.  Burglar
Earl Sharks 40°s  H.5. Mar. Burglar
Rick Sharks 30’s  H.5. Div. Burglar
ol Sharks 30°s COL. Mar. Pusher
Meal Sharks 30's H.5. Sing.  Bookie
Dave Sharks 30's H.5. Div. Pusher

FIGURE 1. Characteristics of a number of individuals belonging 1o two gangs, the Jets and
the Sharks. (From "Retrieving General and Specific Knowledge From Stored Knowledge of
Specifics™ by 1. L. McClelland, 1981, Proceedings of the Third Anmual Conference of the Cognitive
Science Society. Copyright 1981 by J. L. McClelland. Reprinted by permission.)



40  EXERCISES

Starting up. Before running this exercise, you must first set up an iac
directory as described in Appendix A. Change your working directory to
this directory, and enter

iac jets.tem jets.sir

This causes the program to begin running using the template information
stored in the jets.tem file, with the start-up commands contained in the
Jets.str file. The latter file contains the command

get net jets.net

This command causes the program to set up a network containing 68 units.
The units are grouped into seven pools: a pool of name units, a pool of
gang units, a pool of age units, a pool of education units, a pool of marital
status units, a pool of occupation units, and a pool of instance units. The
name pool contains a unit for the name of each person; the gang pool con-
tains a unit for each of the gangs the people are members of (Jets and
Sharks); the age pool contains a unit for each age range; and so on. The
pool of instance units contains a unit for each individual in the set.

The units in the first six pools can be called visible units, since all are
assumed o be accessible from outside the network. Those in the gang,
age, education, marital status, and occupation pools can also be called prop-
erty units. The instance units are assumed to be inaccessible, so they can
be called hidden units.

Each unit has an inhibitory connection to every other unit in the same
pool. In addition, there are two-way excitatory connections between each
instance unit and the units for its properties, as illustrated in Figure 2 (Fig-
ure 11 from PDP:1). Note that the figure is incomplete, in that only some
of the name and instance units are shown. The jets.str file provides names
for each of the units, using the get/ names command. These are given only
for the convenience of the user, of course; all actual computation in the
network occurs only by way of the connections.

The jets.str file also sets the values of the parameters of the model.
These values are

decay = 0.1
alpha = 0.1
gamma = 0.1
estr = 0.4
max = 1.0
min = —0.2
rest = —0.1

These are all set using the command form:

set param < name> < value>



2. INTERACTIVE ACTIVATION AND COMPETITION 41

FIGURE 2. The units and connections for some of the individuals in Figure 1. {Two slight
errors in the connections depicted in the original of this figure have been corrected in this ver-
sion.) (From "Retrieving General and Specific Knowledge From Stored Knowledgs of Specil-
ics” by 1. L. McClelland, 1981, Proceedings of the Third Anmsal Conference of the Cognitive Soi-
ence Society. Copyright 1981 by J. L, McClelland. Reprinted by permission. )

After the program has read the information contained in the jets.tem and
Jets.str files, it produces the display shown in Figure 3. The display shows
the names of all of the units, each flanked with a number on the left and a
number on the right. The number on the left indicates the external input
to the unit; since no input has been specified, these numbers are now all 0.
The number on the right indicates the unit’s current activation value, which
at this point is equal to its resting activation. These numbers are to be read
as hundredths. Thus this initial display indicates that all of the units have a
resting activation level of —0.10.

Units are organized into columns, with the property units in the first
column, the name units for the Jets in the second column, the name units
for the Sharks in the third column, and the instance units for the Jets and
the Sharks in the fourth and fifth columns, respectively. Note that the
names of the instance units begin with " "; the name unit for Lance is
called Lance but the instance unit for Lance is called _Lance. On the far
right of the display is the current cycle number, which is initialized to 0.



42  EXERCISES

13AC :
disp/ exam/ get/ save/ set/ clear cycle do input log quit reset run
teat
0 Jeta jtil 0 Art 0 Phil Q o o
0 Sharks R 0 Al 0 Ike 1] o
0 Sam 0 Nick 0 0 Hick
0 inZ0: [EW 0 Clyde 0 Don o ol
0 in30s ity 0 Mike 0 Hed o 1]
0 ind0: PO 0O Jim 0 Karl ] [
0 Greg 0 Ken ] ¢l
0 JH jlil 0 John 0 Earl 1] 0
0 HS 0 Doug 0 Rick 1] 0]
0 Collegepy O Lance 0ol 1] a
0 George 0 Heal 1] 0 |
0 Single Y 0 Peke 0 Dave ] 0 |
o Harr:.f-n 0 Fred i}
0 Davorcefgly] O Gene i}
0 Ralph 0 “Ralph
0 Pusher B
0 Burglargely
0 Bookie gtQ

FIGURE 3. The initial display produced by the iac program for Exercise 1.

Al the top of the initial display is the program prompt, iac:, as well as a
menu of all of the command words that can be entered by the user,

Since everything is set up for you, you are now ready to do each of the
separate parts of the exercise. Each part is accomplished by using the
interactive activation and competition process to do pattern completion,
given some probe that is presented to the network. For example, to
retrieve an individual’s properties from his name, you simply provide exter-
nal input to his name unit, then allow the IAC network to propagate acliva-
tion first to the name unit, then from there to the instance units, and from
there to the units for the properties of the instance.

Retrieving an individual from his name. To illustrate retrieval of the
properties of an individual from his name, we will use Ken as our example.
To specify external input to the name unit for Ken, you use the inpur com-
mand. When vou lype this command to the iac: prompt, the program asks
if you want to clear all previous inputs (there are none, so you can enter y
or n). Then the command prompts for a unit name or number, followed by
an external input value for that unit. In this case you simply enter Ken as
the name and 1 as the input value.

The program will accepl as many name-value pairs as you wish to enter;
to stop entering pairs just enter end or type return. When you've done this,
the screen will be updated to indicate the external inputs you have speci-
fied. Note that external input of 1.00 displays as "**"; so if you have pro-
vided external input to Ken with value 1, there will be two stars instead of
a 0 next to his name. After this update, you will get back the iac: prompt,
and you are ready 1o run your first simulation,



7. INTERACTIVE ACTIVATION AND COMPETITION 43

To start processing, enter the cycle command. This causes the program
to run for 10 cycles. As it runs each cycle, it will update the screen, but
this will generally occur rather quickly. If you'd like to watch the activation
process unfold one cycle at a time, you can place the program in single-step
mode by entering

sef single 1

Having turned on single mode, you can continue to run more cycles if you
wish. Alternatively, you may want to start over. To do that, enter reser,
then enter cycle again. Now the screen will be updated after each cycle and
processing will pause with the prompt:

p to push /b to break / <cr> to continue:

When you are ready to let the program run the next cycle just type return.
In this way you can step through the cycles, one at a time, and examine at
your leisure what happened on each cycle. Processing will again terminate
at the end of 10 cycles. If you would like to allow processing to go on for
longer, you can simply set noyeles to a larger number, say 100, by entering

ser nevefes 100

As you will observe, activations continue to change for many cycles of
processing. Things slow down gradually, so that after a while not much
seems to be happening on each trial. Eventually things just about stop
changing. Once you've run about 100 cycles, you'll have about reached
asymplotic activation values. (You may, of course, find it convenient to
set single back to 0 at some point in this process.)

A picture of the screen after 100 cycles is shown in Figure 4. At this
point, you can check to see that the model has indeed retrieved the pattern
for Ken correctly. There are also several other things going on that are
worth understanding. Try to answer all of the following questions (you'll
have to refer to the properties of the individuals, as given in Figure 1).

Q.2.1.1. Why are some of Ken’s properties more strongly activated than
others?

(.2.1.2. None of the other name units were activated, yet several other
instance units are active (i.e., their activation is greater than 0).
Explain this dilference.

Q.2.1.3. Why are some of the active instance units more active than
others?

(.2.1.4. The in30s unit is receiving almost as much excitation as the in20s
unit. Why is the latter so much more active than the former?



44  EXERCISES

Lac:
disp/ exam/ get/ save/ sebt/ clear cycle do input log gquit rceset run
test
0 Jeta ° E 0 Art 0 Phil ] 0 Phil cycle 100
0 Sharks 0 Al 0 Ike 0 0 Ike 12
0 Sam 0 Hick 0 0 HWick I3
0 in20s 37 0O Clyde 0 Don o 0 Don 12
0 in30s 0 0 Mike 0 Hed 0 0 Hed 14
0 ind0a 0 Jim 0 Farl 0 0 “Farl 2
0 Greg "* Fen 0 0 _Fen ]
0 JH g 0 John 0 Earl 0 0 “Earl 3
0 HS Z 0 Doug 0 Rick 0 0 HRick 3
0 College§ O Lance 0 0L a0 0 01
0 George 0 Heal 0 0 Meal 23
0 Single 50 0 Pete 0 Dave 0 0 “Dave [EH
D Marriedii¥] 0O Fred 0
0 Divorcef@ple 0O Gene o
0 Ralph a
0 Pusher R
0 Burglar 37
0 Bookie

FIGURE 4. The display screen after 100 cycles with external input to the name unit for Ken.

If vou can answer all of these questions correctly, you understand the
interactive activation and competition process rather well,

Retrieval from a partial description. Next, we will use the iac program
to illustrate how it can retrieve an instance from a partial description of its
properties. We will continue to use Ken, who, as it happens, can be
uniquely described by two properties, Shark and in20s. To do this, enter
the inpuf command, enter y to the gquestion about clearing the previous
inputs, and then specify external inputs of 1 for Shark and in20s. After get-
ting back to the iac: prompt, enter reset and then enter cyele. Run a total
of 100 cycles again, and take a look at the state of the network.

Q.2.1.5. Describe the differences between this stale and the state at the
end of the previous run. What are the main differences?

Q.2.1.6. Explain why the occupation units show partial activations of units
other than Ken's occupation, which is Burglar., Take the explana-
tion as far as you can, contrasting the current case with the previ-
ous case as much as possible.

In comparing this case with the previous one, it may be useful for you to
make a copy of the state of the screen for future reference. To do so, just
enter

save sCreen



2. INTERACTIVE ACTIVATION AND COMPETITION 45

and give a file name as requested. Note that negalive numbers are saved
with minus signs instead of in reverse video, so that they can easily be
printed.

Graceful degradation. What is the effect of erroneous information in
the probe supplied to an TAC network? Here we examine how errors influ-
ence the ability of the network to retrieve an individual's name from a
description of his properties. To begin to explore this issue, run the model
twice: once activating all of Ken’s properties other than his name via the
input command and once with the same external input, but activating JH
instead of HS. Mote that for the second case, you can retain the old input
specification, and then just set the input to HS to 0 and the input to JH to 1
before retesting.

Q.2.1.7. How well does the model do with the "noisy" version of Ken
compared to the correct version of Ken? Would it do this well
with all noisy versions of individuals? Test with at least one other
individual, and explain your results.

Default assignment. Sometimes we do not know something about an
individual; for example, we may never have been exposed to the fact that
Lance is a Burglar. Yet we are able to give plausible guesses about such
missing information. The iac program can do this too. We illustrate by
using the ser/ weights command to set the weights between the instance
unit for Lance and the property unit for Burglar to 0. First, run 100 cycles,
providing external input of 1 to Lance, to see what happens before we
delete the connections. Then, remove these connections as follows. To
the iae: prompt type

set weight Burglar _Lance 0
set weight _Lance Burglar 0

Then reset the network, and run 100 cycles again.

.2.1.8. Describe how the model was able to fill in what in this instance
turns out to be the correct occupation for Lance. Also, explain
why the model tends to activate the Divorced unit as well as the
Married unit.

Spontaneous generalization. Now we consider the network’s ability to
retrieve appropriate generalizations over sets of individuals—that is, its abil-
ity to answer questions like "What are Jets like?" or "What are people who
are in their 20s and have only a junior high education like?" Be sure to
reinstall the connections between Burglar and _Lance (set them back to 1),
Once you've done that, vou can ask the model to generalize about the Jets



46  EXERCISES

by providing external input to the Jets unit alone, then cycling for 100
cycles, you can ask it to generalize about the people in their 20s with a
Jjunior high education by providing external input to the in20s and JH units,

Q.2.1.9. Describe the strengths and weaknesses of the IAC model as a
model of retrieval and generalization. How does it compare with
other models you are familiar with? What properties do you like,
and what properties do you dislike? Are there any general princi-
ples you can state about what the model is doing that are useful in
gaining an understanding of its behavior?

Ex. 2.2, Effects of Changes in Parameter Values

In this exercise, we will examine the effects of variations of the parame-
ters estr, alpha, gamma, and decay on the behavior of the iac program.

Increasing and decreasing the values of the strength parameters.
Explore the effects of adjusting all of these parameters proportionally, using
the partial description of Ken as probe (that is, providing external input to
Shark and in20s).

0Q.2.2.1. What cffects do you observe from decreasing the values of esir,
alpha, gamma, and decay by a factor of 2?7 What happens if you
set them to twice their original values? See iff vou can explain
what is happening here.

Hint. For this exercise, you should first consider the asymptotic activa-
tions of units—what do you expect based on the discussion in the
"Background" section? If you wish to follow the time course of
activation, you can use the log command to store a record of pro-
cessing in a file, then you can use the colex and plot utilities to
make graphs of activations vs. cycle numbers for selected units,
A discussion of how to do this is given in Appendix D.

Relative strength of excitation and inhibition. Return all the parameters
to their original values, then explore the effects of varying the value of
gamma above and below 0.1, again providing external input to the Sharks
and in20s units. Also examine the effects on the completion of Lance’s
properties ftom external input lo his name, with and without the connec-
tions between the instance unit for Lance and the property unit for Burglar,

0.2.2.2. Describe the effects of these manipulations and try to characterize
their influence on the model’s adequacy as a retrieval mechanism,



2. INTERACTIVE ACTIVATION AND COMPETITION 47

Ex. 2.3. Grossberg Variations

Explore the effects of using Grossberg’s update rule rather than the
default rule used in the IAC model. This requires you to use the command

set mode gh
Now redo one or two of the simulations from Exercise 1.

(.2.3.1. What happens when you repeat some of the simulations suggested
in Exercise 1 with gb mode on? Can these effects be compen-
sated for by adjusting the strengths of any of the parameters? If
so, explain why. Do any subtle differences remain, even afler
compensatory adjustments? If so, describe them.

Hints. In considering the issue of compensation, you should consider the
difference in the way the two update rules handle inhibition and
the differential role played by the minimum activation in each
update rule,

Ex. 2.4. Construct Your Own IAC Network

Construct a task that seems appropriate for an 1AC network, along with a
knowledge base (in the form of a .net file), and explore how well the net-
work does in performing your task. You may find it useful to set up .str,
tem, and .loo files, in addition to the .ner file. (Detailed specifications for
the .net, .tem, and .Joo files are given in Appendix C.)

Q.2.4.1. Describe your task, your knowledge base, and the experiments
you run on il. Discuss the adequacy of the IAC model to do the
task you have set it.

Hints. You might bear in mind if you undertake this exercise that you
can specify virtually any architecture you want in an IAC network,
including architectures involving several layers of units. You
might also want to consider the fact that such networks can be
used in low-level perceptual tasks, in perceptual mechanisms that
involve an interaction of stored knowledge with bottom-up infor-
mation, as in the interactive activation model of word perception,
in memory tasks, and in many other kinds of tasks. Use vour
imagination, and you may discover an interesting new application
of TAC networks.





